简单题
100. 相同的树
给定两个二叉树,编写一个函数来检验它们是否相同。
如果两个树在结构上相同,并且节点具有相同的值,则认为它们是相同的。
解题思路:
先判空树,然后比较两树的结点值是否相同,再判断p左树空,q左树不空,q右树空,p右树不空的情况。
1 | /** |
101. 对称二叉树
给定一个二叉树,检查它是否是镜像对称的。
例如,二叉树 [1,2,2,3,4,4,3] 是对称的。1
2
3
4
5 1
/ \
2 2
/ \ / \
3 4 4 3
递归法
1 | class Solution { |
104. 二叉树的最大深度
给定一个二叉树,找出其最大深度。
二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。
说明: 叶子节点是指没有子节点的节点。
示例:
给定二叉树 [3,9,20,null,null,15,7],深度是31
2
3
4
5 3
/ \
9 20
/ \
15 7
递归
1 | /** |
迭代
解题思路:
所以我们从包含根结点且相应深度为 1 的栈开始。然后我们继续迭代:将当前结点弹出栈并推入子结点。每一步都会更新深度。1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24import javafx.util.Pair;
import java.lang.Math;
class Solution {
public int maxDepth(TreeNode root) {
Queue<Pair<TreeNode, Integer>> stack = new LinkedList<>();
if (root != null) {
stack.add(new Pair(root, 1));
}
int depth = 0;
while (!stack.isEmpty()) {
Pair<TreeNode, Integer> current = stack.poll();
root = current.getKey();
int current_depth = current.getValue();
if (root != null) {
depth = Math.max(depth, current_depth);
stack.add(new Pair(root.left, current_depth + 1));
stack.add(new Pair(root.right, current_depth + 1));
}
}
return depth;
}
};
107. 二叉树的层次遍历 II
给定一个二叉树,返回其节点值自底向上的层次遍历。 (即按从叶子节点所在层到根节点所在的层,逐层从左向右遍历)
例如:
给定二叉树 [3,9,20,null,null,15,7],1
2
3
4
5 3
/ \
9 20
/ \
15 7
1 | [ |
1 | public List<List<Integer>> levelOrderBottom(TreeNode root) { |
递归
1 | public List<List<Integer>> levelOrderBottom(TreeNode root) { |
基础回顾
树的遍历(DFS思想)
1 | A |
中序遍历:左子树——》根节点——》右子树
1
2
3
4
5
6
7public void infixOrder(Node current){
if(current != null){
infixOrder(current.leftChild);
System.out.print(current.data+" ");
infixOrder(current.rightChild);
}
}前序遍历:根节点——》左子树——》右子树
1
2
3
4
5
6
7public void preOrder(Node current){
if(current != null){
System.out.print(current.data+" ");
preOrder(current.leftChild);
preOrder(current.rightChild);
}
}后序遍历:左子树——》右子树——》根节点
1
2
3
4
5
6
7public void postOrder(Node current){
if(current != null){
postOrder(current.leftChild);
postOrder(current.rightChild);
System.out.print(current.data+" ");
}
}